"Развитие логического мышления учащихся на уроках математики"

Автор: Кудашева Эльвира Анатольевна
Должность: учитель начальных классов
Учебное заведение: МБОУ "СОШ №9"
Населённый пункт: город Энгельс,Саратовская область
Наименование материала: методическая разработка
Тема: "Развитие логического мышления учащихся на уроках математики"
Дата публикации: 02.02.2016







Вернуться назад       Перейти в раздел





Текстовая часть публикации

Доклад на тему: «
Развитие логического мышления

учащихся на уроках математики»
Выполнила: Кудашева Эльвира Анатольевна

1. Введение.
Природа щедро наделила человека, но два ее дара трудно оценить. Именно они помогли ему стать человеком. Имеется в виду две особенности свойственные только человеку: способность мыслить и передавать свои мысли, имеющуюся у него информацию другим людям посредством речи. Способность четко мыслить, полноценно логически рассуждать и ясно излагать свои мысли в настоящее время необходимы каждому. В них нуждается ученый и руководитель предприятия, врач и преподаватель, агроном и рабочий, политический деятель и крестьянин. Вот почему вопросы развития мышления и речи являются основной задачей начиная с детского сада до аспирантуры. Совершенствовать эти два дара необходимо всю жизнь. От того, насколько успешно удастся решить эти задачи, зависит многое, и, прежде всего прогресс общества, научно-техническое развитие, экономическое и культурное процветание. Ими должны заниматься все преподаватели, внося в это общее дело каждый свое, присущее его специальности. Математик должен приучить к краткому и логически полноценному изложению, литератор – к выразительной и эмоционально насыщенной речи, историк - к последовательному изложению и умению приводить отдельные факты в систему. Слова «Математика ум в порядок приводит» принадлежат великому М.В.Ломоносову. Что он имел в виду? Дело в том, что наше мышление, перерабатывая ощущения, восприятия и представления о предметах и явлениях, как бы предвосхищает будущее, указывает нам, как поступить, что сделать в создавшейся ситуации. Поэтому от того, как «работает» наше мышление, зависит, поступим ли мы правильно и разумно или нет. Человек рождается без умения мыслить, лишь с задатками к нему. Мыслить он научится постепенно в процессе жизненной практики, в общении с взрослыми и своими сверстниками, и особенно в обучении. 2
Одним из наиболее важных качеств мышления является его логичность, то есть способность делать из правильных посылок (суждений, утверждений) правильные выводы, находить правильные следствия из имеющихся фактов. О человеке, у которого хорошо развито логическое мышление, говорят, что он основательно мыслит, дисциплинированно рассуждает. Такой человек, как правило, не допускает ошибок в своих рассуждениях и выводах. Хорошо развитое логическое мышление предостерегает человека от промахов и ошибок в практической деятельности. И вот оказывается, что это ценнейшее качество возникает и развивается главным образом в процессе изучения математики, ибо математика – это практическая логика, в ней каждое новое положение получается с помощью строго обоснованных рассуждений на основе ранее известных положений, то есть строго доказывается. Это же значение изучения математики указывал и М.И.Калинин, призывая молодежь серьезно изучать математику: «Математика дисциплинирует ум, приучает к логическому мышлению. Недаром говорят, что математика – это гимнастика ума». В связи с этим легко понять, почему так важно самому выводить формулы, доказывать тождества и теоремы. Ведь дело не в том, чтобы запомнить их на всю жизнь. Возможно, что они забудутся, но останется привычка рассуждать, сохранится умение объяснять, доказывать не только другим, но и самому себе какие-то истины, укрепится умение искать и находить рациональные пути решения возникающих в жизни проблем. Вот эту культуру, дисциплину мысли, ее последовательность, глубину и критичность, широту и оригинальность, а так же необходимую пищу для мышления – систему знаний дает школа. Это сторона обучения математике особенно важна в наши дни, поскольку сейчас объем необходимых для человека знаний резко и быстро возрастает, поэтому необходимо каждому научиться самостоятельно пополнять свои знания. Овладеть этими умениями поможет добросовестное самостоятельное изучение математики. 3
Изучение математики формирует не только логическое мышление, но и многих других качеств человека: сообразительность, настойчивость, аккуратность, критичность. Очень важным среди них является пространственное воображение, то есть умение представлять в уме какие-то предметы, фигуры и при этом увидеть их не только неподвижными, но и в изменении, то есть представить, что произойдет, если их как-то переместить, повернуть. При изучении математики, при решении геометрических задач все время приходится делать это. Например, токарь, получив чертеж, должен до работы представить себе образ той детали, которую ему нужно выточить. А портниха должна обладать хорошими способностями к пространственному воображению, чтобы правильно раскроить материал. Эти же умения и способности позволяют шахматисту направлять фигуры на доске, а полководцу – войска на поле боя. Художник или писатель должен уметь детально вообразить ту ситуацию, которую он хочет описать. Высокий уровень ориентировки в пространстве является необходимым условием для спортсмена, позволяющим ему овладеть своим телом. А инженер? А оператор? А космонавт?… Нет такой области человеческой деятельности, где не нужны были бы хорошие умения и способности к пространственному воображению. Изучение математики, решение математических задач развивают, помимо пространственного воображения, и способность догадываться, угадывать заранее результат, способность разумно искать правильный путь в самых запутанных условиях. Прочтя задачу и еще не производя никаких действий надо сразу научиться видеть, что тот или иной способ непригоден для ее решения, а какой-то другой способ может быть использован. Математику следует глубоко и серьезно изучать не только потому, что она служит основой научного познания, и не только потому, что без нее нельзя сделать ни шагу в жизни, в практической деятельности на любой работе, но и потому, что процесс ее изучения способствует развитию у человека важнейших качеств и способностей. 4
Уже сам по себе процесс изучения математики приводит к умению логически, доказательно мыслить. Развитие мышления учащихся многократно ускоряется и усиливается, если, обучая математике, одновременно учить умелому применению различных мыслительных приемов. Мышление учащегося проявляется в умении анализировать и синтезировать, обобщать, конкретизировать, то есть в умении применять различные приемы мыслительной деятельности к изучаемому материалу, к решению задачи, к любой жизненной ситуации. После изучения того или иного раздела полезно составлять с учащимися схемы и выполнять упражнения по этим схемам. Это позволяет повторять изученное с использованием целого ряда приемов мыслительной деятельности. Пример. Изучив тему «Параллельные прямые», предлагается упражнение: «Составить схему, указывая в ней зависимость между их определениями, аксиомами, теоремами». Учащиеся составляют схемы (на первых порах вместе с учителем). 5 Определение а параллельно в Способы построения Аксиомы параллельности Другие признаки параллельности Если а параллельно в, то соответственные… ….
Очевидно, такая работа позволяет обобщить изученный материал, устанавливать взаимосвязи, которые ускользают от внимания учащихся при изучении отдельных тем. При этом учащиеся и повторяют материал, и учатся применять различные мыслительные приемы. На уроках математики мы знакомим учащихся с понятиями, которые часто носят абстрактный характер и не могут быть представлены в виде конкретных образов. Конечно, с одаренными детьми есть возможность заниматься дополнительно как на уроках, так и на факультативах и кружках. Но мы обучаем всех без исключения детей. Поэтому на первый план выдвигается задача поддержания интереса к своему предмету, а далее – развитие познавательной активности, творческого мышления учащихся. На уроках полезны и дидактические игры, которые выявляют понимание учащимися материала. Если ученики заучивают определение, не вдумываясь в них, то на вопросы дидактических игр им сложно ответить. Можно использовать такие игры, как «Прав ли я?», «Найди ошибку», «Строители», «Арифметическая и геометрическая прогрессии», «Построй Фигуру», «Профессии» и др. Важную роль в развитии логического мышления играет школа. Именно в в школе заключается психологическая основа для такой деятельности. Развиваются воображение и фантазия, творческое мышление, воспитывается любознательность, формируются умения наблюдать и анализировать явления, проводить сравнения, обобщать факты, делать выводы, практически оценивать деятельность, активность, инициатива. Начинают складываться и дифференцироваться интересы, склонности, формируются потребности, лежащие в основе творчества. Развитие логического мышления неотделимо от формирования исполнительских умений и навыков. Чем разностороннее и совершеннее умения и навыки учащихся, тем богаче их фантазия, реальнее их замыслы, тем более сложные математические задания выполняют дети. 6
Специфическое значение внеклассных занятий для развития логического мышления, заключается в том, что на них всегда достаточно времени для осуществления проблемного метода обучения, для выявления самобытности мышления каждого ученика, для индивидуального подхода, для испробования разных подходов, разных путей поиска. Дети, хорошо успевающие, смогут в еще большей степени развернуть свое логическое мышление, а слабоуспевающие, решая нестандартные задачи, посильные для них, смогут обрести уверенность в своих силах, научиться управлять своими поисковыми действиями, подчинять их определенному плану. В этих условиях у детей развиваются такие важные качества мышления, как глубина, критичность, гибкость, которые являются сторонами его самостоятельности. Только развитие самостоятельного мышления, логического, творческого, поискового, исследовательского есть основная задача обучения. Таким образом, единственным плодотворным путем развития логического мышления у детей становится максимально полное раскрытие потенциальных возможностей, природных задатков, и каждый учитель должен создать такую полноценно развивающуюся деятельность для учащихся, чтобы потенциал не остался не востребованным. 7