Новость от 29.10.2015

Биофизики МФТИ научились быстро синтезировать ценные белки с помощью химер


Группа исследователей из лаборатории перспективных исследований мембранных белков, предложила метод, который позволит существенно упростить получение ценных белков для дальнейшего изучения. Описанный на страницах журнала PLOS ONE подход может существенно снизить стоимость и, самое главное, продолжительность исследований, которые сейчас могут длиться многие месяцы, за счёт систематического поиска возможных решений вместо подхода «пан-или-пропал», нередко используемого сейчас.

Проделанное исследование можно отнести к области структурной биологии – области науки, одной из ключевых задач которой является получение структур разнообразных белков. Только в человеческом геноме их зашифровано, по разным оценкам, от 20 000 до 25 000. Интереснее всего для ученых и фармацевтов белки, с помощью которых клетки «общаются» с окружающим миром – мембранные белки, составляющие примерно четверть от общего количества зашифрованных белков. Однако на данный момент известна структура всего лишь 3% мембранных белков (в то время как на данный момент известна структура около половины белков человека). И это несмотря на то, что именно мембранные белки в большинстве случаев являются мишенями для лекарств, и на их изучение тратятся огромные деньги и усилия ученых и фармацевтических компаний во всем мире. За получение структуры конкретных мембранных белков – рецепторов, сопряженных с G-белками, – в 2012 году была присуждена Нобелевская премия.

Анимированная версия структуры комплекса из трех бактериород: http://goo.gl/l26Ljo
Для расшифровки структуры белка прежде всего необходимо получить его в достаточном количестве. Самым простым и дешевым методом для этого является экспрессия в клетках E. coli – кишечной палочки, неприхотливой и наиболее изученной бактерии. Для этого ген, кодирующий нужный белок, вводят в клетки E. coli, заставляя бактерий гиперэкспрессировать этот белок (то есть синтезировать в больших количествах). Затем белок выделяют из бактерий, очищают и кристаллизуют, чтобы потом по картинке рентгеновского рассеяния восстановить структуру белка.

Столкнуться с серьезными проблемами ученые могут уже на первом этапе – экспрессии. Их решение часто происходит перебором различных методов, известных на данный момент, что довольно долго и дорого. Авторы статьи предложили алгоритм, который позволит решать проблемы экспрессии систематическим способом, на основе четкого алгоритма. Это позволит значительно ускорить этот этап в исследованиях по всему миру.

Суть решения в следующем. Для белка, у которого наблюдаются проблемы с экспрессией (это целевой белок, структуру которого нужно получить), подбирают другой, похожий на него (гомологичный) белок, экспрессия у которого идёт лучше (этот белок называют драйвером экспрессии, или просто драйвером). Затем синтезируются химеры, «сшитые» из частей целевого белка и драйвера таким образом, что довольно быстро удается определить, какой участок целевого белка виноват в низком уровне экспрессии.

«Можно сделать две различные химеры, заменив одну из половин целевого белка на половину драйвера. Проверяется экспрессия получившихся химер. Исходя из того, какая из них экспрессируется лучше, определяем, в какой половине белка находится место, которое мешает экспрессии. Далее переходим ко второй итерации, сделав две новые химеры на основе той химеры, которая лучше экспрессировалась в первой итерации, и уменьшив тем самым в этой химере вдвое долю драйвера. Проверяется экспрессия новых химер, выясняем, какая часть препятствует экспрессии, и так далее, пока не выясним, в чем точно заключается проблема» – поясняет Дмитрий Братанов, первый автор статьи.

Следует отметить, что в итоге получается обнаружить необходимую мутацию за 2lg2N экспрессий белка, в то время как случайный ее поиск требует 2итераций (здесь N – количество аминокислот в его цепочке). Преимущество нового алгоритма можно увидеть на примере небольшого белка из 200 аминокислот: для него потребуется синтезировать не более 16 различных химер, в то время как случайный перебор требует синтезировать порядка 1060 различных белков – больше, чем во всех живых организмах на планете.

В качестве примера работы алгоритма авторы получили химеру бактериородопсина из бактерии H. halobium. Структура его получена уже давно, но сам он при этом выделялся из родных для него клеток, работа с которыми довольно затруднительна и требует больше времени, чем работа с кишечной палочкой. В E. coli, ученые пытаются экспрессировать бактериородопсин уже около 30 лет, но до сих пор методы, которые применялись к этой задаче, не позволяли получить его в больших количествах и в той форме, в которой белок функционирует в клетке.

Сам по себе бактериородопсин – важный модельный белок для проверки различных теорий, связанных с мембранными белками в целом. Алгоритм, предложенный учеными, позволит получать его без использования экзотических методов экспрессии, что существенно упростит доступ к работе с мембранными белками в лабораториях во всём мире. Кроме того, существует несколько десятков изобретений на основе бактериородопсина, использующихся в отраслях от биомедицины и биотехнологии до создания оптических инструментов (лазеров, например) и измерительных систем.

Отметим, что получение белков, последовательность которых чем-либо отличается от исходной, является стандартным методом улучшения экспрессии, но до сих пор этот метод модифицировался индивидуально под каждый белок.

«В основном стратегия предыдущих подходов следующая. На один из концов белка дополнительно помещаются различные полипептидные последовательности (теги), которые могут быть экспрессионными, кристаллизационными и т.д. При этом используется стратегия «пан-или-пропал». Повезло – белок стал экспрессироваться, не повезло – попробуем следующий тег. Чаще всего в процессе очистки белка такая последовательность удаляется. Мы же предложили подход, который позволяет систематическим образом выявлять проблемы, приводящие к отсутствию экспрессии белка. При этом предполагается, что получившийся химерный белок будет иметь незначительные изменения по сравнению с целевым белком», – поясняет Валентин Горделий, главный автор исследования.

В перспективе, предложенный метод позволит значительно ускорить процессы исследования мембранных белков, что может изменить стратегию синтеза лекарств и даст возможность с помощью компьютерного моделирования находить новые действующие вещества быстрее и точнее. Так же, изучение мембранных белков важно для новой науки оптогенетики, которая уже сейчас открывает невероятные возможности для исследования нейродегенеративных заболеваний, таких как болезнь Альцгеймера или Паркинсона.


Источник: http://минобрнауки.рф/новости/6592

Вернуться назад